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3.0 Preface - Algorithms in Computer Science 
 
 

3.1 Definition 
 
 

An algorithm is a prescription for 
solving a class of problems. It 

consists of a finite sequence of steps 
with which new output data can be 

uniquely calculated from known 
input data. 
 

 

3.2 Properties 
 
 
• The definition shows the close relationship with functions.  

 

(Input Data → Output Data). 
 
• The definition binds the algorithm to solving a class of problems rather than a single task. 

 
 

3.3 Mathematical Function 
 
 

• The definition of an algorithm does not contain any requirements for the practical 
executability of the algorithm on a real machine (computer). 

 
An algorithm can be understood as a function (mathematical definition). 
 

y=f(x) or f: D → Z, x →y 
 

(D: Definition Quantity, Z: Target Quantity) 
 

In mathematics, a function or map is a relationship between two sets that assigns to each 
element of one set (function argument, independent variable, x-value) exactly one element 
of the other set (function value, dependent variable, y-value, or f(x) value). 
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Interpretation: 

 
• Elements from sets: input and output 
• The elements can also be sets, vectors, etc. 

 
 

Thus, an algorithm is assigned to a function. 
 
However, there are functions to which no algorithm can be assigned. These functions are 

therefore not calculable. 
 

 
Definition: 
 

A function  f is  called computable if there is an algorithm that  calculates the function value 
f(x) for each argument x. 

 
 

3.4 Characteristic Features 
 
 

3.4.1 Finitude 
 

 
An algorithm must consist of a finite number of solution steps and, after processing these 
finite many steps, reach the end after a finite time. 

 
 

3.4.2 Uniqueness 
 

 
The individual steps of an algorithm and their sequence must be clearly described. 
 

 
3.4.3 Universality 

 
 
An algorithm must not only describe the solution of a specific problem (e.g. solution of 

equation x² + 2x + 1=0), but must describe the solution of a class of problems (e.g. the 
solution of all quadratic equations ax² +bx +c =0). 

 
 
3.4.4 Determinacy 

 
 

The repeated application of the algorithm with the same input data must always provide the 
same output data. 
  

 
3.4.5 Efficiency 

 
An algorithm must use as few resources as possible for a machine, i.e. as little computing 
time and memory as possible. 
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In computer science, efficiency measures for algorithms, the so-called time and memory 

complexity, have been developed, with which algorithms can be evaluated. This is very 
important in practice since several algorithms can usually be specified to calculate a function. 
 

 

3.5 Representation 
 
 

In addition to the notation of individual elementary actions/instructions, such as 
- Enter the values of the coefficients a,b,c  
 

logical elementary structures are also necessary, which represent the temporal sequence, 
such as the sequence of instructions, such as 

 
1. Enter the values of the coefficients a,b,c 
2. Calculate d = b*b – 4*a*c 

 
but also, the selection 

 
3. If d<0 continue with step 7 
 

 
When representing algorithms, the focus is primarily on the representation of the temporal 

sequence, the so-called control flow, and not on the representation of the individual 
elementary instruction itself. 
 

 
Theorem by Böhm and Jacopini 

 
With only three logical elementary structures 

 
• Sequenz 
• Selektion 

• Zyklus 
 

any algorithmic problem can be represented. 
 
Two different forms of representation have been developed, which are mainly in use and use 

graphic symbols: 
 

 
▪ Flow chart according to DIN 66001 (vgl. 3.5.1) 

 

▪ Structure chart according to Nassi and Shneiderman according to DIN 66261  
(vgl. 3.5.2) 

 
 
Both represent a so-called syntax, which formally specifies the expressions of the description. 

 
The meaning of the representation is called semantics. 
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3.5.1 Flow Chart 

 
 

 
 
 

 
3.5.2 Structure Chart 
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3.5.3 Sequence 

 
 

 
 
 

The essence of a sequence is that it represents only a single action/instruction to the outside, 
although internally it consists of a sequence of instructions (Anw). 
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4.0 The HTTP-QuSS Algorithm 
 
 

4.1 The Function 
 
 

4.1.1 State of the Art Latency TCP Bandwidth Problem 
 

 
Available TCP Bandwidth depends on Distance expressed in Round Trip Time measured in 

Milliseconds ms. 
 

ƒTCP: RTTTCP → Mbit/s TCP  = The Function  ƒTCP: forms from RTTTCP the Quantity of Mbit/s TCP 
                                            Mbit/s TCP is functionally dependent on RTTTCP 
 

With simple words: Distance (RTT) destroys available TCP Bandwidth. 
 

 
4.1.2 Network Latency Definition 

 

 

Network Latency refers to the time and/or delay involved in transmitting data over a network. In 

other words, how long it takes for a data packet to go from the IP transmitter to the IP receiver 

and back again.  

 

Network Latency is measured in RTT/ms  (Round Trip Time in Milliseconds). 
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4.1.3  The Network Latency is caused by 

 

 

4.1.3.1 Transport Medium Propagation Speed 

 

𝑴𝒗 = km/s 
 

𝑴 = Electricity, Radio, Light 

𝒗  = Speed in km/s 

 

 

4.1.3.2 IP Distance between Transmitter and Receiver 

 

𝑫𝒊𝒑  = km 

 

𝑫 = Distance 

𝒊𝒑 = Internet IP Address 
 

 

4.1.3.3 HOP Packet Queue + Processing Time  

 

𝑯𝑶𝑷𝒒𝒑𝒕  = ms 

 

𝑯𝑶𝑷 = Network nodes (router, switch) between two network segments 

𝒒𝒑𝒕 = HOP queue + processing time per data packet 
 

 

4.1.3.4 IP Sender/Receiver Network Card Queue 

 

𝑵𝑰𝑪𝒒𝒕  = ms 

 

𝑵𝑰𝑪 = Network Adapter 

𝒒𝒕 = Queue time 

 

 
4.1.3.5 IP Transmitter/Receiver CPU Packet Processing Time 

 

𝑪𝑷𝑼𝒕  = ms 

 

𝑪𝑷𝑼 = Central processing unit 

𝒕 = ms 
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4.1.4 The Network Latency Formula 

 

 

𝑅𝑇𝑇𝑚𝑠 = 2 ∗ (∑
𝐷𝑖𝑝𝑥
𝑀𝑣𝑥

𝑛

1

+∑𝐻𝑂𝑃𝑞𝑝𝑡𝑥

𝑛

1

+ 2 ∗ 𝑁𝐼𝐶𝑞𝑡 + 2 ∗ 𝐶𝑃𝑈𝑡) 

 

 

4.1.5 Correlation between Network TCP Bandwidth and Network Latency RTT 
 
 

 

 

 

 

 

 

A simple Hyperbel Function 
 
 

 

 

𝐟(𝐱) =
𝟏𝟎𝟎𝟎

𝐑𝐓𝐓
+ 𝟏𝟎 
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4.2 The new Algorithm for Quantum like TCP Bandwidth Speed 
 

 
Available TCP Bandwidth does not depend on Distance and is always constant. 
 

Mbit/s HTTP-QuSS = Ȼ                  = Mbit/s HTTP-QuSS is always constant 
                                                      There is not a functionally dependency on RTTTCP 
 
 

With simple words: No TCP Bandwidth Losses caused by long Distances. 
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4.3 Sequence Display 

The HTTP-QuSS Algorithm can be realized with now available powerful embedded Hardware 
and a new disruptive parallel Processing Chain. 

Shortcuts: 
 
Internet OSI 4  = ISO/OSI-Network Reference Model Layer 4 TCP/UDP   

PPX   = Parallel Software Processes 
SOA   = Existing Internet - State of the Art 

Quantum  = Future Quantum Internet 
 
Legend: 

 
Browser http Process Request including File Download Tunnel 

 
Embedded Cluster Management and related Process Dispatching 

 

Dispatched and executed parallel Processes  
 

Generated multiplexed Object Stream 
 

DPU supported Bandwidth Slicing, Shaping, and secure UDP Transmission 

 
SOA-Router 

 
Quantum-Router | Gateway 

 

1

2

3

4

5

6

7
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4.4 Suitable Embedded Hardware 
 
 

4.4.1 NVIDIA Embedded Supercomputer A100 
 

 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

The NVIDIA A100 GPU is composed of multiple GPU processing clusters (GPCs), texture 
processing clusters (TPCs), streaming multiprocessors (SMs), and HBM2 memory controllers. 

 
 
The full implementation of the A100 GPU includes the following units: 

 
 

• 8 GPCs, 8 TPCs/GPC, 2 SMs/TPC, 16 SMs/GPC, 128 SMs per full GPU 
• 64 FP32 CUDA Cores/SM, 8192 FP32 CUDA Cores per full GPU 
• 4 third-generation Tensor Cores/SM, 512 third-generation Tensor Cores per full GPU  

• 6 HBM2 stacks, 12 512-bit memory controllers 
 

 
The A100 Tensor Core GPU implementation of the GA100 GPU includes the 
following units: 

 
 

• 7 GPCs, 7 or 8 TPCs/GPC, 2 SMs/TPC, up to 16 SMs/GPC, 108 SMs 
• 64 FP32 CUDA Cores/SM, 6912 FP32 CUDA Cores per GPU 
• 4 third-generation Tensor Cores/SM, 432 third-generation Tensor Cores per GPU  

• 5 HBM2 stacks, 10 512-bit memory controllers 
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4.4.2 NVIDIA Embedded Supercomputer H100 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 

 
The NVIDIA H100 GPU is composed of multiple GPU Processing Clusters (GPCs), Texture 
Processing Clusters (TPCs), Streaming Multiprocessors (SMs), L2 cache, and HBM3 memory 

controllers. 
 

The full implementation of the GH100 GPU includes the following units: 
 
• 8 GPCs, 72 TPCs (9 TPCs/GPC), 2 SMs/TPC, 144 SMs per full GPU 

• 128 FP32 CUDA Cores per SM, 18432 FP32 CUDA Cores per full GPU 
• 4 Fourth-Generation Tensor Cores per SM, 576 per full GPU 

• 6 HBM3 or HBM2e stacks, 12 512-bit Memory Controllers 
• 60 MB L2 Cache 
• Fourth Generation NVLink and PCIe Gen 5 

 
The NVIDIA H100 GPU with SXM5 board form-factor includes the following units: 

 
• 8 GPCs, 66 TPCs, 2 SMs/TPC, 132 SMs per GPU 
• 128 FP32 CUDA Cores per SM, 16896 FP32 CUDA Cores per GPU 

• 4 Fourth-generation Tensor Cores per SM, 528 per GPU 
• 80 GB HBM3, 5 HBM3 stacks, 10 512-bit Memory Controllers 

• 50 MB L2 Cache 
• Fourth Generation NVLink and PCIe Gen 5 

 

The NVIDIA H100 GPU with a PCIe Gen 5 board form-factor includes the following units: 
 

• 7 or 8 GPCs, 57 TPCs, 2 SMs/TPC, 114 SMs per GPU 
• 128 FP32 CUDA Cores/SM, 14592 FP32 CUDA Cores per GPU 
• 4 Fourth-generation Tensor Cores per SM, 456 per GPU 

• 80 GB HBM2e, 5 HBM2e stacks, 10 512-bit Memory Controllers 
• 50 MB L2 Cache 

• Fourth Generation NVLink and PCIe Gen 5 
 

Using the TSMC 4N fabrication process allows H100 to increase GPU core frequency, improve 

performance per watt, and incorporate more GPCs, TPCs, and SMs than the prior generation 
GA100 GPU, which was based on the TSMC 7nm N7 process. 
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Note that the H100 GPUs are primarily built for executing datacenter and edge compute 

workloads for AI, HPC, and data analytics, but not graphics processing. Only two TPCs in 
both the SXM5 and PCIe H100 GPUs are graphics-capable (that is, they can run vertex, 
geometry, and pixel shaders). 

 
 

4.4.2 NVIDIA DPU for Bandwidth Slicing | Shaping and SOC Client 
 
 

4.4.2.1 What’s a DPU? 
 

Specialists in moving data in data centers, DPUs, or data processing units, are a new class 
of programmable processor and will join CPUs and GPUs as one of the three pillars of 
computing. 

 
Of course, you’re probably already familiar with the central processing unit. Flexible and 

responsive, for many years CPUs were the sole programmable element in most computers. 
 

More recently the GPU, or graphics processing unit, has taken a central role. Originally used 
to deliver rich, real-time graphics, their parallel processing capabilities make them ideal for 
accelerated computing tasks of all kinds. Thanks to these capabilities, GPUs are essential to 

artificial intelligence, deep learning and big data analytics applications. 
 

Over the past decade, however, computing has broken out of the boxy confines of PCs and 
servers — with CPUs and GPUs powering sprawling new hyperscale data centers. 
 

These data centers are knit together with a powerful new category of processors. The DPU 
has become the third member of the data-centric accelerated computing model. 

 
“This is going to represent one of the three major pillars of computing going forward,” NVIDIA 
CEO Jensen Huang said during a talk earlier this month. 

 
“The CPU is for general-purpose computing, the GPU is for accelerated computing, and the 

DPU, which moves data around the data center, does data processing.” 
 
So, a DPU is a System on a chip that combines: 

 
• Industry-standard, high-performance, software-programmable multi-core CPU 

• High-performance network interface 
• Flexible and programmable acceleration engines 
 

2.3.2.2 CPU v GPU v DPU: What Makes a DPU Different?  
 

 
A DPU is a new class of programmable processor that combines three key elements. A DPU 
is a system on a chip, or SoC, that combines: 

 
• An industry-standard, high-performance, software-programmable, multi-core CPU, 

typically based on the widely used Arm architecture, tightly coupled to the other SoC 
components. 
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• A high-performance network interface capable of parsing, processing and efficiently 

transferring data at line rate, or the speed of the rest of the network, to GPUs and 
CPUs. 

 

• A rich set of flexible and programmable acceleration engines that offload and improve 
applications performance for AI and machine learning, zero-trust security, 

telecommunications, and storage, among others. 
 
All these DPU capabilities are critical to enable an isolated, bare-metal, cloud-native 

computing platform that will define the next generation of cloud-scale computing. 
 

 
4.4.2.2 DPUs Incorporated into SmartNICs 
 

 
The DPU can be used as a stand-alone embedded processor. But it’s more often incorporated 

into a SmartNIC, a network interface controller used as a critical component in a next-
generation server. 

 
Other devices that claim to be DPUs miss significant elements of these three critical 
capabilities. 

 
 

 
 

 
For example, some vendors use proprietary processors that don’t benefit from the broad Arm 

CPU ecosystem’s rich development and application infrastructure. 
 
Others claim to have DPUs but make the mistake of focusing solely on the embedded CPU to 

perform data path processing. 
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4.4.2.3 A Focus on Data Processing 

 
 
That approach isn’t competitive and doesn’t scale, because trying to beat the traditional x86 

CPU with a brute force performance attack is a losing battle. If 100 Gigabit/sec packet 
processing brings an x86 to its knees, why would an embedded CPU perform better? 

 
Instead, the network interface needs to be powerful and flexible enough to handle all network 
data path processing. The embedded CPU should be used for control path initialization and 

exception processing, nothing more. 
 

At a minimum, there 10 capabilities the network data path acceleration engines need to be 
able to deliver: 
 

 
1. Data packet parsing, matching and manipulation to implement an open virtual switch 

(OVS) 
 

2. RDMA data transport acceleration for Zero Touch RoCE 
 

3. GPUDirect accelerators to bypass the CPU and feed networked data directly to GPUs 

(both from storage and from other GPUs) 
 

4. TCP acceleration including RSS, LRO, checksum, etc. 
 

5. Network virtualization for VXLAN and Geneve overlays and VTEP offload 

 
6. Traffic shaping “packet pacing” accelerator to enable multimedia streaming, content 

distribution networks and the new 4K/8K Video over IP (RiverMax for ST 2110) 
 

7. Precision timing accelerators for telco cloud RAN such as 5T for 5G capabilities 

 
8. Crypto acceleration for IPSEC and TLS performed inline, so all other accelerations 

are still operational 
 

9. Virtualization support for SR-IOV, VirtIO and para-virtualization 

 
10. Secure Isolation: root of trust, secure boot, secure firmware upgrades, and 

authenticated containers and application lifecycle management 
 
These are just 10 of the acceleration and hardware capabilities that are critical to being able 

to answer yes to the question: “What is a DPU?” 
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4.4.2.4 So what is a DPU?  

 
 
This is a DPU: 

 
 

 
 
 

 
 

 
 
 

 
 

 
 

 
4.4.2.5 HTTP-QuSS Server | NVIDIA BLUEFIELD-2/3 DPU 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

For: 
 

• Bandwidth Slicing 

• Bandwidth Shaping 
• Secure quantum encrypted UDP Data Transmission 
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4.4.2.6 HTTP-QuSS Client | NVIDIA SOC DPU 

 
 

 

 
 

 
 
 

 
 

 
 
 

 
 

 
 

For: 
 

• Processing the incoming high-speed HTTP-QuSS secure UDP Object Stream without 

stressing the CPU’s 
• Forwarding Object Data to proper TCP WinSock’s 

• Providing a non-interruptible Error Correction and Secure UDP Data Transmission 
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4.5 New disruptive HTTP-QuSS Server/Client Process Architecture 
 
4.5.1 HTTP-QuSS Server | NVIDIA A/H100 Process Architecture 

 
Coding Details are Part of the HTTP-QuSS_Release_Specification.pdf 
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4.5.2 HTTP-QuSS Client |  NVIDIA SOC DPU Process Architecture 

 
 
Coding Details are Part of the HTTP-QuSS_Release_Specification.pdf 

 
 

Incoming IP Traffic 
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