

Site 2 / 23

Table of Contents

1.0 Non-Disclosure Notice .. 3
2.0 Patent Notice .. 3
3.0 Preface - Algorithms in Computer Science ... 4

3.1 DEFINITION .. 4
3.2 PROPERTIES ... 4
3.3 MATHEMATICAL FUNCTION ... 4
3.4 CHARACTERISTIC FEATURES .. 5

3.4.1 Finitude .. 5
3.4.2 Uniqueness .. 5
3.4.3 Universality .. 5
3.4.4 Determinacy .. 5
3.4.5 Efficiency .. 5

3.5 REPRESENTATION .. 6

3.5.1 Flow Chart ... 7
3.5.2 Structure Chart .. 7
3.5.3 Sequence.. 8

4.0 The HTTP-QuSS Algorithm ... 9

4.1 THE FUNCTION ... 9
4.1.1 State of the Art Latency TCP Bandwidth Problem ... 9
4.1.2 Network Latency Definition ... 9
4.1.3 The Network Latency is caused by .. 10

4.1.3.1 Transport Medium Propagation Speed ... 10
4.1.3.2 IP Distance between Transmitter and Receiver... 10
4.1.3.3 HOP Packet Queue + Processing Time ... 10
4.1.3.4 IP Sender/Receiver Network Card Queue ... 10
4.1.3.5 IP Transmitter/Receiver CPU Packet Processing Time ... 10

4.1.4 The Network Latency Formula ... 11
4.1.5 Correlation between Network TCP Bandwidth and Network Latency RTT 11

4.2 THE NEW ALGORITHM FOR QUANTUM LIKE TCP BANDWIDTH SPEED ... 12
4.3 SEQUENCE DISPLAY .. 13
4.4 SUITABLE EMBEDDED HARDWARE ... 14

4.4.1 NVIDIA Embedded Supercomputer A100 ... 14
4.4.2 NVIDIA Embedded Supercomputer H100 .. 15
4.4.2 NVIDIA DPU for Bandwidth Slicing | Shaping and SOC Client ... 16

4.4.2.1 What’s a DPU? ... 16
4.4.2.2 DPUs Incorporated into SmartNICs ... 17
4.4.2.3 A Focus on Data Processing ... 18
4.4.2.4 So what is a DPU? .. 19
4.4.2.5 HTTP-QuSS Server | NVIDIA BLUEFIELD-2/3 DPU .. 19
4.4.2.6 HTTP-QuSS Client | NVIDIA SOC DPU .. 20

4.5 NEW DISRUPTIVE HTTP-QUSS SERVER/CLIENT PROCESS ARCHITECTURE .. 21

4.5.1 HTTP-QuSS Server | NVIDIA A/H100 Process Architecture .. 21
4.5.2 HTTP-QuSS Client | NVIDIA SOC DPU Process Architecture .. 22

Site 3 / 23

1.0 Non-Disclosure Notice

This Document contains internal and confidential Information from Dipl.-Ing. (FH) Klaus

Rock. Third Parties may not access this Work without the express Permission of Dipl.-Ing.
(FH) Klaus Rock. The Information contained in this Document may not be disclosed publicly
for two Years following the mutual signed NDA unless otherwise expressly approved by Dipl.-

Ing. (FH) Klaus Rock.

2.0 Patent Notice

Dipl.-Ing. (FH) Klaus Rock is the Inventor and Patent Applicant for this new HTTP-QuSS

Technology mentioned within this Documentation.

Name of the Invention

METHOD AND SYSTEM FOR DATA TRANSMISSION WITH

SIGNIFICANTLY REDUCED LATENCY LOSSES

APPLICATION
NUMBER

PRIORITY APPLICANT COUNTRY

EP 19189655.4 01 August 2019 Rock, Mr. Klaus Germany

PCT 19189655.4 01 August 2019 Rock, Mr. Klaus All WTO
Member States

Dipl.-Ing.(FH) Computer Science Klaus Rock

Bonhoefferstr. 37
73432 Aalen – Germany

Tel: +49-7367-9222-958
E-Mail: k.rock@rock-technologies.com

mailto:k.rock@rock-technologies.com

Site 4 / 23

3.0 Preface - Algorithms in Computer Science

3.1 Definition

An algorithm is a prescription for
solving a class of problems. It

consists of a finite sequence of steps
with which new output data can be

uniquely calculated from known
input data.

3.2 Properties

• The definition shows the close relationship with functions.

(Input Data → Output Data).

• The definition binds the algorithm to solving a class of problems rather than a single task.

3.3 Mathematical Function

• The definition of an algorithm does not contain any requirements for the practical
executability of the algorithm on a real machine (computer).

An algorithm can be understood as a function (mathematical definition).

y=f(x) or f: D → Z, x →y

(D: Definition Quantity, Z: Target Quantity)

In mathematics, a function or map is a relationship between two sets that assigns to each
element of one set (function argument, independent variable, x-value) exactly one element
of the other set (function value, dependent variable, y-value, or f(x) value).

Site 5 / 23

Interpretation:

• Elements from sets: input and output
• The elements can also be sets, vectors, etc.

Thus, an algorithm is assigned to a function.

However, there are functions to which no algorithm can be assigned. These functions are

therefore not calculable.

Definition:

A function f is called computable if there is an algorithm that calculates the function value
f(x) for each argument x.

3.4 Characteristic Features

3.4.1 Finitude

An algorithm must consist of a finite number of solution steps and, after processing these
finite many steps, reach the end after a finite time.

3.4.2 Uniqueness

The individual steps of an algorithm and their sequence must be clearly described.

3.4.3 Universality

An algorithm must not only describe the solution of a specific problem (e.g. solution of

equation x² + 2x + 1=0), but must describe the solution of a class of problems (e.g. the
solution of all quadratic equations ax² +bx +c =0).

3.4.4 Determinacy

The repeated application of the algorithm with the same input data must always provide the
same output data.

3.4.5 Efficiency

An algorithm must use as few resources as possible for a machine, i.e. as little computing
time and memory as possible.

Site 6 / 23

In computer science, efficiency measures for algorithms, the so-called time and memory

complexity, have been developed, with which algorithms can be evaluated. This is very
important in practice since several algorithms can usually be specified to calculate a function.

3.5 Representation

In addition to the notation of individual elementary actions/instructions, such as
- Enter the values of the coefficients a,b,c

logical elementary structures are also necessary, which represent the temporal sequence,
such as the sequence of instructions, such as

1. Enter the values of the coefficients a,b,c
2. Calculate d = b*b – 4*a*c

but also, the selection

3. If d<0 continue with step 7

When representing algorithms, the focus is primarily on the representation of the temporal

sequence, the so-called control flow, and not on the representation of the individual
elementary instruction itself.

Theorem by Böhm and Jacopini

With only three logical elementary structures

• Sequenz
• Selektion

• Zyklus

any algorithmic problem can be represented.

Two different forms of representation have been developed, which are mainly in use and use

graphic symbols:

▪ Flow chart according to DIN 66001 (vgl. 3.5.1)

▪ Structure chart according to Nassi and Shneiderman according to DIN 66261
(vgl. 3.5.2)

Both represent a so-called syntax, which formally specifies the expressions of the description.

The meaning of the representation is called semantics.

Site 7 / 23

3.5.1 Flow Chart

3.5.2 Structure Chart

Site 8 / 23

3.5.3 Sequence

The essence of a sequence is that it represents only a single action/instruction to the outside,
although internally it consists of a sequence of instructions (Anw).

Site 9 / 23

4.0 The HTTP-QuSS Algorithm

4.1 The Function

4.1.1 State of the Art Latency TCP Bandwidth Problem

Available TCP Bandwidth depends on Distance expressed in Round Trip Time measured in

Milliseconds ms.

ƒTCP: RTTTCP → Mbit/s TCP = The Function ƒTCP: forms from RTTTCP the Quantity of Mbit/s TCP
 Mbit/s TCP is functionally dependent on RTTTCP

With simple words: Distance (RTT) destroys available TCP Bandwidth.

4.1.2 Network Latency Definition

Network Latency refers to the time and/or delay involved in transmitting data over a network. In

other words, how long it takes for a data packet to go from the IP transmitter to the IP receiver

and back again.

Network Latency is measured in RTT/ms (Round Trip Time in Milliseconds).

Site 10 / 23

4.1.3 The Network Latency is caused by

4.1.3.1 Transport Medium Propagation Speed

𝑴𝒗 = km/s

𝑴 = Electricity, Radio, Light

𝒗 = Speed in km/s

4.1.3.2 IP Distance between Transmitter and Receiver

𝑫𝒊𝒑 = km

𝑫 = Distance

𝒊𝒑 = Internet IP Address

4.1.3.3 HOP Packet Queue + Processing Time

𝑯𝑶𝑷𝒒𝒑𝒕 = ms

𝑯𝑶𝑷 = Network nodes (router, switch) between two network segments

𝒒𝒑𝒕 = HOP queue + processing time per data packet

4.1.3.4 IP Sender/Receiver Network Card Queue

𝑵𝑰𝑪𝒒𝒕 = ms

𝑵𝑰𝑪 = Network Adapter

𝒒𝒕 = Queue time

4.1.3.5 IP Transmitter/Receiver CPU Packet Processing Time

𝑪𝑷𝑼𝒕 = ms

𝑪𝑷𝑼 = Central processing unit

𝒕 = ms

Site 11 / 23

4.1.4 The Network Latency Formula

𝑅𝑇𝑇𝑚𝑠 = 2 ∗ (∑
𝐷𝑖𝑝𝑥
𝑀𝑣𝑥

𝑛

1

+∑𝐻𝑂𝑃𝑞𝑝𝑡𝑥

𝑛

1

+ 2 ∗ 𝑁𝐼𝐶𝑞𝑡 + 2 ∗ 𝐶𝑃𝑈𝑡)

4.1.5 Correlation between Network TCP Bandwidth and Network Latency RTT

A simple Hyperbel Function

𝐟(𝐱) =
𝟏𝟎𝟎𝟎

𝐑𝐓𝐓
+ 𝟏𝟎

Site 12 / 23

4.2 The new Algorithm for Quantum like TCP Bandwidth Speed

Available TCP Bandwidth does not depend on Distance and is always constant.

Mbit/s HTTP-QuSS = Ȼ = Mbit/s HTTP-QuSS is always constant
 There is not a functionally dependency on RTTTCP

With simple words: No TCP Bandwidth Losses caused by long Distances.

Site 13 / 23

4.3 Sequence Display

The HTTP-QuSS Algorithm can be realized with now available powerful embedded Hardware
and a new disruptive parallel Processing Chain.

Shortcuts:

Internet OSI 4 = ISO/OSI-Network Reference Model Layer 4 TCP/UDP

PPX = Parallel Software Processes
SOA = Existing Internet - State of the Art

Quantum = Future Quantum Internet

Legend:

Browser http Process Request including File Download Tunnel

Embedded Cluster Management and related Process Dispatching

Dispatched and executed parallel Processes

Generated multiplexed Object Stream

DPU supported Bandwidth Slicing, Shaping, and secure UDP Transmission

SOA-Router

Quantum-Router | Gateway

1

2

3

4

5

6

7

Site 14 / 23

4.4 Suitable Embedded Hardware

4.4.1 NVIDIA Embedded Supercomputer A100

The NVIDIA A100 GPU is composed of multiple GPU processing clusters (GPCs), texture
processing clusters (TPCs), streaming multiprocessors (SMs), and HBM2 memory controllers.

The full implementation of the A100 GPU includes the following units:

• 8 GPCs, 8 TPCs/GPC, 2 SMs/TPC, 16 SMs/GPC, 128 SMs per full GPU
• 64 FP32 CUDA Cores/SM, 8192 FP32 CUDA Cores per full GPU
• 4 third-generation Tensor Cores/SM, 512 third-generation Tensor Cores per full GPU

• 6 HBM2 stacks, 12 512-bit memory controllers

The A100 Tensor Core GPU implementation of the GA100 GPU includes the
following units:

• 7 GPCs, 7 or 8 TPCs/GPC, 2 SMs/TPC, up to 16 SMs/GPC, 108 SMs
• 64 FP32 CUDA Cores/SM, 6912 FP32 CUDA Cores per GPU
• 4 third-generation Tensor Cores/SM, 432 third-generation Tensor Cores per GPU

• 5 HBM2 stacks, 10 512-bit memory controllers

Site 15 / 23

4.4.2 NVIDIA Embedded Supercomputer H100

The NVIDIA H100 GPU is composed of multiple GPU Processing Clusters (GPCs), Texture
Processing Clusters (TPCs), Streaming Multiprocessors (SMs), L2 cache, and HBM3 memory

controllers.

The full implementation of the GH100 GPU includes the following units:

• 8 GPCs, 72 TPCs (9 TPCs/GPC), 2 SMs/TPC, 144 SMs per full GPU

• 128 FP32 CUDA Cores per SM, 18432 FP32 CUDA Cores per full GPU
• 4 Fourth-Generation Tensor Cores per SM, 576 per full GPU

• 6 HBM3 or HBM2e stacks, 12 512-bit Memory Controllers
• 60 MB L2 Cache
• Fourth Generation NVLink and PCIe Gen 5

The NVIDIA H100 GPU with SXM5 board form-factor includes the following units:

• 8 GPCs, 66 TPCs, 2 SMs/TPC, 132 SMs per GPU
• 128 FP32 CUDA Cores per SM, 16896 FP32 CUDA Cores per GPU

• 4 Fourth-generation Tensor Cores per SM, 528 per GPU
• 80 GB HBM3, 5 HBM3 stacks, 10 512-bit Memory Controllers

• 50 MB L2 Cache
• Fourth Generation NVLink and PCIe Gen 5

The NVIDIA H100 GPU with a PCIe Gen 5 board form-factor includes the following units:

• 7 or 8 GPCs, 57 TPCs, 2 SMs/TPC, 114 SMs per GPU
• 128 FP32 CUDA Cores/SM, 14592 FP32 CUDA Cores per GPU
• 4 Fourth-generation Tensor Cores per SM, 456 per GPU

• 80 GB HBM2e, 5 HBM2e stacks, 10 512-bit Memory Controllers
• 50 MB L2 Cache

• Fourth Generation NVLink and PCIe Gen 5

Using the TSMC 4N fabrication process allows H100 to increase GPU core frequency, improve

performance per watt, and incorporate more GPCs, TPCs, and SMs than the prior generation
GA100 GPU, which was based on the TSMC 7nm N7 process.

Site 16 / 23

Note that the H100 GPUs are primarily built for executing datacenter and edge compute

workloads for AI, HPC, and data analytics, but not graphics processing. Only two TPCs in
both the SXM5 and PCIe H100 GPUs are graphics-capable (that is, they can run vertex,
geometry, and pixel shaders).

4.4.2 NVIDIA DPU for Bandwidth Slicing | Shaping and SOC Client

4.4.2.1 What’s a DPU?

Specialists in moving data in data centers, DPUs, or data processing units, are a new class
of programmable processor and will join CPUs and GPUs as one of the three pillars of
computing.

Of course, you’re probably already familiar with the central processing unit. Flexible and

responsive, for many years CPUs were the sole programmable element in most computers.

More recently the GPU, or graphics processing unit, has taken a central role. Originally used
to deliver rich, real-time graphics, their parallel processing capabilities make them ideal for
accelerated computing tasks of all kinds. Thanks to these capabilities, GPUs are essential to

artificial intelligence, deep learning and big data analytics applications.

Over the past decade, however, computing has broken out of the boxy confines of PCs and
servers — with CPUs and GPUs powering sprawling new hyperscale data centers.

These data centers are knit together with a powerful new category of processors. The DPU
has become the third member of the data-centric accelerated computing model.

“This is going to represent one of the three major pillars of computing going forward,” NVIDIA
CEO Jensen Huang said during a talk earlier this month.

“The CPU is for general-purpose computing, the GPU is for accelerated computing, and the

DPU, which moves data around the data center, does data processing.”

So, a DPU is a System on a chip that combines:

• Industry-standard, high-performance, software-programmable multi-core CPU

• High-performance network interface
• Flexible and programmable acceleration engines

2.3.2.2 CPU v GPU v DPU: What Makes a DPU Different?

A DPU is a new class of programmable processor that combines three key elements. A DPU
is a system on a chip, or SoC, that combines:

• An industry-standard, high-performance, software-programmable, multi-core CPU,

typically based on the widely used Arm architecture, tightly coupled to the other SoC
components.

Site 17 / 23

• A high-performance network interface capable of parsing, processing and efficiently

transferring data at line rate, or the speed of the rest of the network, to GPUs and
CPUs.

• A rich set of flexible and programmable acceleration engines that offload and improve
applications performance for AI and machine learning, zero-trust security,

telecommunications, and storage, among others.

All these DPU capabilities are critical to enable an isolated, bare-metal, cloud-native

computing platform that will define the next generation of cloud-scale computing.

4.4.2.2 DPUs Incorporated into SmartNICs

The DPU can be used as a stand-alone embedded processor. But it’s more often incorporated

into a SmartNIC, a network interface controller used as a critical component in a next-
generation server.

Other devices that claim to be DPUs miss significant elements of these three critical
capabilities.

For example, some vendors use proprietary processors that don’t benefit from the broad Arm

CPU ecosystem’s rich development and application infrastructure.

Others claim to have DPUs but make the mistake of focusing solely on the embedded CPU to

perform data path processing.

Site 18 / 23

4.4.2.3 A Focus on Data Processing

That approach isn’t competitive and doesn’t scale, because trying to beat the traditional x86

CPU with a brute force performance attack is a losing battle. If 100 Gigabit/sec packet
processing brings an x86 to its knees, why would an embedded CPU perform better?

Instead, the network interface needs to be powerful and flexible enough to handle all network
data path processing. The embedded CPU should be used for control path initialization and

exception processing, nothing more.

At a minimum, there 10 capabilities the network data path acceleration engines need to be
able to deliver:

1. Data packet parsing, matching and manipulation to implement an open virtual switch

(OVS)

2. RDMA data transport acceleration for Zero Touch RoCE

3. GPUDirect accelerators to bypass the CPU and feed networked data directly to GPUs

(both from storage and from other GPUs)

4. TCP acceleration including RSS, LRO, checksum, etc.

5. Network virtualization for VXLAN and Geneve overlays and VTEP offload

6. Traffic shaping “packet pacing” accelerator to enable multimedia streaming, content

distribution networks and the new 4K/8K Video over IP (RiverMax for ST 2110)

7. Precision timing accelerators for telco cloud RAN such as 5T for 5G capabilities

8. Crypto acceleration for IPSEC and TLS performed inline, so all other accelerations

are still operational

9. Virtualization support for SR-IOV, VirtIO and para-virtualization

10. Secure Isolation: root of trust, secure boot, secure firmware upgrades, and

authenticated containers and application lifecycle management

These are just 10 of the acceleration and hardware capabilities that are critical to being able

to answer yes to the question: “What is a DPU?”

Site 19 / 23

4.4.2.4 So what is a DPU?

This is a DPU:

4.4.2.5 HTTP-QuSS Server | NVIDIA BLUEFIELD-2/3 DPU

For:

• Bandwidth Slicing

• Bandwidth Shaping
• Secure quantum encrypted UDP Data Transmission

Site 20 / 23

4.4.2.6 HTTP-QuSS Client | NVIDIA SOC DPU

For:

• Processing the incoming high-speed HTTP-QuSS secure UDP Object Stream without

stressing the CPU’s
• Forwarding Object Data to proper TCP WinSock’s

• Providing a non-interruptible Error Correction and Secure UDP Data Transmission

Site 21 / 23

4.5 New disruptive HTTP-QuSS Server/Client Process Architecture

4.5.1 HTTP-QuSS Server | NVIDIA A/H100 Process Architecture

Coding Details are Part of the HTTP-QuSS_Release_Specification.pdf

Site 22 / 23

4.5.2 HTTP-QuSS Client | NVIDIA SOC DPU Process Architecture

Coding Details are Part of the HTTP-QuSS_Release_Specification.pdf

Incoming IP Traffic

Site 23 / 23

	Table of Contents
	1.0 Non-Disclosure Notice
	2.0 Patent Notice
	3.0 Preface - Algorithms in Computer Science
	3.1 Definition
	3.2 Properties
	3.3 Mathematical Function
	3.4 Characteristic Features
	3.4.1 Finitude
	3.4.2 Uniqueness
	3.4.3 Universality
	3.4.4 Determinacy
	3.4.5 Efficiency

	3.5 Representation
	3.5.1 Flow Chart
	3.5.2 Structure Chart
	3.5.3 Sequence

	4.0 The HTTP-QuSS Algorithm
	4.1 The Function
	4.1.1 State of the Art Latency TCP Bandwidth Problem
	4.1.2 Network Latency Definition
	4.1.3 The Network Latency is caused by
	4.1.3.1 Transport Medium Propagation Speed
	4.1.3.2 IP Distance between Transmitter and Receiver
	4.1.3.3 HOP Packet Queue + Processing Time
	4.1.3.4 IP Sender/Receiver Network Card Queue
	4.1.3.5 IP Transmitter/Receiver CPU Packet Processing Time

	4.1.4 The Network Latency Formula
	4.1.5 Correlation between Network TCP Bandwidth and Network Latency RTT

	4.2 The new Algorithm for Quantum like TCP Bandwidth Speed
	4.3 Sequence Display
	4.4 Suitable Embedded Hardware
	4.4.1 NVIDIA Embedded Supercomputer A100
	4.4.2 NVIDIA Embedded Supercomputer H100
	4.4.2 NVIDIA DPU for Bandwidth Slicing | Shaping and SOC Client
	4.4.2.1 What’s a DPU?
	4.4.2.2 DPUs Incorporated into SmartNICs
	4.4.2.3 A Focus on Data Processing
	4.4.2.4 So what is a DPU?
	4.4.2.5 HTTP-QuSS Server | NVIDIA BLUEFIELD-2/3 DPU
	4.4.2.6 HTTP-QuSS Client | NVIDIA SOC DPU

	4.5 New disruptive HTTP-QuSS Server/Client Process Architecture
	4.5.1 HTTP-QuSS Server | NVIDIA A/H100 Process Architecture
	4.5.2 HTTP-QuSS Client | NVIDIA SOC DPU Process Architecture

